

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/xtermjs/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/xtermjs/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
[image: xterm.js logo] [https://xtermjs.org]

[image: xterm.js build status] [https://travis-ci.org/sourcelair/xterm.js] [image: Coverage Status] [https://coveralls.io/github/sourcelair/xterm.js] [image: Gitter] [https://gitter.im/sourcelair/xterm.js?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge]

Xterm.js is a terminal front-end component written in JavaScript that works in the browser.

It enables applications to provide fully featured terminals to their users and create great development experiences.


Features


	Text-based application support: Use xterm.js to work with applications like bash, git etc.

	Curses-based application support: Use xterm.js to work with applications like vim, tmux etc.

	Mouse events support: Xterm.js captures mouse events like click and scroll and passes them to the terminal’s back-end controlling process

	CJK (Chinese, Japanese, Korean) character support: Xterm.js renders CJK characters seamlessly

	IME support: Insert international (including CJK) characters using IME input with your keyboard

	Self-contained library: Xterm.js works on its own. It does not require any external libraries like jQuery or React to work

	Modular, event-based API: Lets you build addons and themes with ease






What xterm.js is not


	Xterm.js is not a terminal application that you can download and use on your computer

	Xterm.js is not bash. Xterm.js can be connected to processes like bash and let you interact with them (provide input, receive output)






Real-world uses

Xterm.js is used in several world-class applications to provide great terminal experiences.


	SourceLair [https://www.sourcelair.com/]: In-browser IDE that provides its users with fully-featured Linux terminals based on xterm.js

	Microsoft Visual Studio Code [http://code.visualstudio.com/]: Modern, versatile and powerful open source code editor that provides an integrated terminal based on xterm.js

	ttyd [https://github.com/tsl0922/ttyd]: A command-line tool for sharing terminal over the web, with fully-featured terminal emulation based on xterm.js

	Katacoda [https://www.katacoda.com/]: Katacoda is an Interactive Learning Platform for software developers, covering the latest Cloud Native technologies.

	Eclipse Che [http://www.eclipse.org/che]: Developer workspace server, cloud IDE, and Eclipse next-generation IDE.

	Codenvy [http://www.codenvy.com]: Cloud workspaces for development teams.

	CoderPad [https://coderpad.io]: Online interviewing platform for programmers. Run code in many programming languages, with results displayed by xterm.js.

	WebSSH2 [https://github.com/billchurch/WebSSH2]: A web based SSH2 client using xterm.js, socket.io, and ssh2.

	Spyder Terminal [https://github.com/spyder-ide/spyder-terminal]: A full fledged system terminal embedded on Spyder IDE.

	Cloud Commander [https://cloudcmd.io]: Orthodox web file manager with console and editor.

	Codevolve [https://www.codevolve.com]: Online platform for interactive coding and web development courses. Live container-backed terminal uses xterm.js.

	RStudio [https://www.rstudio.com/products/RStudio]: RStudio is an integrated development environment (IDE) for R.

	Terminal for Atom [https://github.com/jsmecham/atom-terminal-tab]: A simple terminal for the Atom text editor.

	Eclipse Orion [https://orionhub.org]: A modern, open source software development environment that runs in the cloud. Code, deploy and run in the cloud.

	Gravitational Teleport [https://github.com/gravitational/teleport]: Gravitational Teleport is a modern SSH server for remotely accessing clusters of Linux servers via SSH or HTTPS.

	Hexlet [https://en.hexlet.io]: Practical programming courses (JavaScript, PHP, Unix, databases, functional programming). A steady path from the first line of code to the first job.

	Selenoid UI [https://github.com/aerokube/selenoid-ui]: Simple UI for the scallable golang implementation of Selenium Hub named Selenoid. We use XTerm for streaming logs over websockets from docker containers.

	Portainer [https://portainer.io]: Simple management UI for Docker.

	SSHy [https://github.com/stuicey/SSHy]: HTML5 Based SSHv2 Web Client with E2E encryption utilising xterm.js, SJCL & websockets.

	JupyterLab [https://github.com/jupyterlab/jupyterlab]: An extensible
computational environment for Jupyter, supporting interactive data science and scientific computing across all programming languages.

	Script Runner [https://github.com/ioquatix/script-runner]: Run scripts (or a shell) in Atom.

	Whack Whack Terminal [https://github.com/Microsoft/WhackWhackTerminal]: Terminal emulator for Visual Studio 2017.

	VTerm [https://github.com/vterm/vterm]: Extensible terminal emulator based on Electron and React.



Do you use xterm.js in your application as well? Please open a Pull Request [https://github.com/sourcelair/xterm.js/pulls] to include it here. We would love to have it in our list.




Browser Support

Since xterm.js is typically implemented as a developer tool, only modern browsers are supported officially. Here is a list of the versions we aim to support:


	Chrome 48+

	Edge 13+

	Firefox 44+

	Internet Explorer 11+

	Opera 35+

	Safari 8+



Xterm.js works seamlessly in Electron apps and may even work on earlier versions of the browsers but these are the browsers we strive to keep working.




Demo


Linux or macOS

Run the following commands:

$ npm install
$ npm start





Then open http://0.0.0.0:3000 in a web browser.




Windows

First, ensure node-gyp [https://github.com/nodejs/node-gyp] is installed and configured correctly, then run these commands.

Note: Do not use ConEmu, as it seems to break the demo for some reason.

> npm install
> npm start





Then open http://127.0.0.1:3000 in a web browser.






Getting Started

To start using xterm.js on your browser, add the xterm.js and xterm.css to the head of your html page. Then create a <div id="terminal"></div> onto which xterm can attach itself.

<!doctype html>
  <html>
    <head>
      <link rel="stylesheet" href="bower_components/xterm.js/dist/xterm.css" />
      <script src="bower_components/xterm.js/dist/xterm.js"></script>
    </head>
    <body>
      <div id="terminal"></div>
      <script>
        var term = new Terminal();
        term.open(document.getElementById('terminal'));
        term.write('Hello from \033[1;3;31mxterm.js\033[0m $ ')
      </script>
    </body>
  </html>





Finally instantiate the Terminal object and then call the open function with the DOM object of the div.




Addons

Addons are JavaScript modules that attach functions to the Terminal prototype to extend its functionality. There are a handful available in the main repository in the dist/addons directory, you can even write your own (though they may break when the internals of xterm.js change across versions).

To use an addon, just include the JavaScript file after xterm.js and before the Terminal object has been instantiated. The function should then be exposed on the Terminal object:

<script src="node_modules/dist/xterm.js"></script>
<script src="node_modules/dist/addons/fit/fit.js"></script>





var xterm = new Terminal();
// init code...
xterm.fit();








Releases

Xterm.js follows a monthly release cycle roughly.

The existing releases are available at this GitHub repo’s Releases [https://github.com/sourcelair/xterm.js/releases], while the roadmap is available as Milestones [https://github.com/sourcelair/xterm.js/milestones].




Development and Contribution

Xterm.js is maintained by SourceLair [https://www.sourcelair.com/] and a few external contributors, but we would love to receive contributions from everyone!

To contribute either code, documentation or issues to xterm.js please read the Contributing document beforehand. The development of xterm.js does not require any special tool. All you need is an editor that supports JavaScript/TypeScript and a browser. You will need Node.js installed locally to get all the features working in the demo.




License Agreement

If you contribute code to this project, you are implicitly allowing your code to be distributed under the MIT license. You are also implicitly verifying that all code is your original work.

Copyright (c) 2014-2017, SourceLair, Private Company (www.sourcelair.com [https://www.sourcelair.com/home]) (MIT License)

Copyright (c) 2012-2013, Christopher Jeffrey (MIT License)







          

      

      

    

  

    
      
          
            
  
How to contribute to xterm.js


	Opening issues for bug reports or feature requests

	Contributing code




Opening issues

The preferred way to report bugs or request features is to use
GitHub issues [http://github.com/sourcelair/xterm.js/issues]. Before
opening an issue, read these pointers.


Opening issues effectively


	Include information about the browser in which the problem occurred. Even
if you tested several browsers, and the problem occurred in all of them,
mention this fact in the bug report. Also include browser version numbers and
the operating system that you’re on.

	Mention which release of xterm.js you’re using. Preferably, try also with
the current HEAD of the master branch, to ensure the problem has not already been
fixed.

	Mention precisely what went wrong. What did you expect to happen? What happened instead? Describe the
exact steps a maintainer has to take to make the problem occur.

	If the problem can not be reproduced in the demo of xterm.js, please provide an HTML document that demonstrates the problem.

	Be polite. Issues with an indignant or belligerent tone tend to be moved to the
bottom of the pile.








Contributing code


	Make sure you have a GitHub account [https://github.com/join]

	Fork xterm.js [https://github.com/sourcelair/xterm.js/]
(how to fork a repo [https://help.github.com/articles/fork-a-repo])

	Make your changes

	If your changes are easy to test or likely to regress, add tests. Tests go into test, directory.

	Follow the general code style of the rest of the project (see below).

	Submit a pull request
(how to create a pull request [https://help.github.com/articles/fork-a-repo]).
Don’t put more than one feature/fix in a single pull request.



By contributing code to xterm.js you


	agree to license the contributed code under xterm.js’ MIT
license.

	confirm that you have the right to contribute and license the code
in question. (Either you hold all rights on the code, or the rights
holder has explicitly granted the right to use it like this,
through a compatible open source license or through a direct
agreement with you.)









          

      

      

    

  

    
      
          
            
  
Details


	Browser and browser version:

	OS version:

	xterm.js version:




Steps to reproduce


	

	









          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		Welcome to Read the Docs


      


    
  

_images/logo.png
)xterm.jsl





_static/file.png





_static/minus.png





_static/comment.png





_static/down-pressed.png





_static/down.png





_static/plus.png





_static/ajax-loader.gif





_static/up.png





_static/up-pressed.png





_static/comment-close.png





_static/comment-bright.png





